{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Regresión logística\n",
"\n",
"Es un algoritmo para obtener un clasificador binario. \n",
"\n",
"La regresión logística es bastante efectiva en situaciones en las que la relación entre la **probabilidad** de lograr una meta/objetivo (Y) está vinculada a los recursos necesarios (X) de manera no lineal donde una disminución/aumento de cierto recurso más allá de cierto umbral disminuye/aumenta drásticamente la probabilidad de lograr el objetivo.\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
\n",
"\n",
"\n",
"Los clasificadores binaros basados en regresión logística clasifican las observaciones de acuerdo a un umbral típicamente 0.5 (50%).\n",
"\n",
"Hay dos técnicas comunmente empleadas para obtener los coeficientes de regresión. __[MLE](https://es.wikipedia.org/wiki/M%C3%A1xima_verosimilitud)__ y __[mínimos cuadrados](https://es.wikipedia.org/wiki/M%C3%ADnimos_cuadrados)__ (luego de convertir la relación establecida por la curva \"S\" a una relación lineal)\n",
"\n",
"\n",
"__[Scikit Learn - Regresión logística](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)__"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"df_entrenamiento = pd.read_csv(os.path.join(\"csv\", \"train.csv\"), index_col='PassengerId')"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n", " | Survived | \n", "Pclass | \n", "Name | \n", "Sex | \n", "Age | \n", "SibSp | \n", "Parch | \n", "Ticket | \n", "Fare | \n", "Cabin | \n", "Embarked | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|
PassengerId | \n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " |
1 | \n", "0 | \n", "3 | \n", "Braund, Mr. Owen Harris | \n", "male | \n", "22.0 | \n", "1 | \n", "0 | \n", "A/5 21171 | \n", "7.2500 | \n", "NaN | \n", "S | \n", "
2 | \n", "1 | \n", "1 | \n", "Cumings, Mrs. John Bradley (Florence Briggs Th... | \n", "female | \n", "38.0 | \n", "1 | \n", "0 | \n", "PC 17599 | \n", "71.2833 | \n", "C85 | \n", "C | \n", "
3 | \n", "1 | \n", "3 | \n", "Heikkinen, Miss. Laina | \n", "female | \n", "26.0 | \n", "0 | \n", "0 | \n", "STON/O2. 3101282 | \n", "7.9250 | \n", "NaN | \n", "S | \n", "
4 | \n", "1 | \n", "1 | \n", "Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n", "female | \n", "35.0 | \n", "1 | \n", "0 | \n", "113803 | \n", "53.1000 | \n", "C123 | \n", "S | \n", "
5 | \n", "0 | \n", "3 | \n", "Allen, Mr. William Henry | \n", "male | \n", "35.0 | \n", "0 | \n", "0 | \n", "373450 | \n", "8.0500 | \n", "NaN | \n", "S | \n", "